Une alternative à la modélisation morphodynamique par transfert local forcée par un modèle à résolution de phase

JMVPR 2023 – Île d'Aix

R. Dupont ^{1,2,3} F. Bouchette ^{1,3} B. Mohammadi ^{2,3}

1 GEOSCIENCES-M, Univ Montpellier, CNRS, Montpellier, France, ronan.dupont@umontpellier.fr, frederic.bouchette@umontpellier.fr 2 IMAG, Univ Montpellier, CNRS, Montpellier, France, bijan.mohammadi@umontpellier.fr 3 GLADYS, Univ Montpellier, CNRS, Le Grau du Roi, France

- ► I) Introduction
- II) Modèle OptiMorph
- ► III) L'approche d'Hadamard
- IV) Couplage avec un modèle à résolution vagues à vagues: Saint-Venant

I) Introduction

- Un nouveau modèle morphodynamique générique couplable avec n'importe quel modèle hydrodynamique.
- Un nouveau modèle hydrodynamique à faible complexité.
- Des cas-tests de benchmark très connus validés.
- Un modèle à creation de barres sédimentaires: très performant sur la phénomènologie.

0) Workflow

Figure 1. Diagramme de fonctionnement d'OptiMorph.

1) Forçages - paramètres

Physique	Paramètres	Définition		
	Δx	Pas spatial [m]		
Paramètres numériques	Δt	Pas de temps [s]		
	T _f	Temps de simulation [s]		
	L	Taille du domaine [m]		
Domaine	h ₀	Profondeur d'eau au large [m]		
	α	Pente pour une bathy linéaire		
Hydrodynamique	H ₀ (t)	Hauteur d'eau au large [m]		
	Hmax	Hauteur d'eau maximale au large [m]		
	T ₀	Période de vague [s]		
	ψ_0	Bathymétrie initiale		
Morphodynamique	Y	Mobilité sédimentaire [m.s.kg-1]		
	в	Pente maximale		

Tab 1. Différents paramètres de forçage.

5

 II) Modèle OptiMorph

 2) Modèles hydrodynamiques

 SWAN
 ▶ Shallow Water model

 Simulating WAves Nearshore

Généré par DALL-E2 (openai)

2) Extended Shoaling (ShoalExpress)

Modèle ShoalExpress :

$$H(x,t) = \begin{cases} H_0(x,t)K_{\rm S}(x,t) & \text{for } x \in \Omega_{\rm S} \\ \mathcal{F}(\gamma h(x,t)) & \text{for } x \in \Omega_{\rm B} \end{cases}$$

25

50

2) Résultats hydrodynamiques pour le test LIP11D – 1C

]	Experiment	Initial Geometry	$H_S[\mathbf{m}]$	$T_P[\mathbf{s}]$	Duration [h]
1	LIP11-1A	Initial beach profile	0.9	5	
	LIP11-1B	Result of 1A	1.4	5	18
]	LIP11-1C	Result of 1B	0.6	8	13

Figure 2. Résultats hydrodynamiques avec les modèles ShoalExpress, SWAN et XBeach

x - Distance [m]

100

125

150

MWL

8

175

<u>II) Modèle OptiMorph</u> 3) Modèle morphodynamique

Hypothèse:

L'évolution au cours du temps du fond marin ψ est basée sur l'hypothèse que le fond évolue de telle sorte que l'énergie des vagues soit minimisée.

Corollaire:

En prenant une infinité de géométries quelconques, la plus réaliste correspondra à celle où l'énergie des vagues sera la plus faible.

Modèle: minimisation de J

$$J(\psi,t) = \frac{1}{16} \int_{\Omega} \rho_{\rm w} g H^2(\psi,x,t) dx \quad \left[J.m^{-1} \right]$$

 $\Omega_{\rm S}$: shoaling zone [m] $\rho_{\rm w}$: water density [kg.m⁻³] g : gravitational acceleration [m.s⁻²] H : significant wave height [m]

3) Modèle morphodynamique

Experiment	Initial Geometry	$H_S[\mathbf{m}]$	$T_P[s]$	Duration [h]
LIP11-1A	Initial beach profile	0.9	5	
LIP11-1B	Result of 1A	1.4	5	18
LIP11-1C	Result of 1B	0.6	8	13

Comparison of Wave Energy E_H for 2 differents configuration with the following problem: $H_0 = 0.85 \text{ m} - h_0 = 4.1 \text{ m} - T_0 = 5 \text{ s}$

Figure 3. Calcul d'énergie de H selon deux configurations différentes. Violet état avant expérience en canal; vert: après.

3) Modèle morphodynamique

$$\begin{split} \psi_t &: \text{ evolution of the seabed over time } \begin{bmatrix} m.s^{-1} \end{bmatrix} \\ \Upsilon &: \text{ abrasion of sand } \begin{bmatrix} m.s. & \text{kg}^{-1} \end{bmatrix} \\ \Lambda &: \text{ excitation of the seabed by the water waves} \\ \psi_0 &: \text{ initial seabed elevation } \begin{bmatrix} m \end{bmatrix} \\ d &= -\nabla_{\psi} J \end{bmatrix} + \text{ constraints : the decent direction } \begin{bmatrix} J.m^{-2} \end{bmatrix}$$

11

Cost-function

$$J(\psi,t) = \frac{1}{16} \int_{\Omega} \rho_{\rm w} g H^2(\psi,x,t) dx \quad \left[J.m^{-1} \right]$$

 $\Omega_{\rm S}$: shoaling zone [m] $\rho_{\rm w}$: water density [kg.m⁻³] g : gravitational acceleration $[m.s^{-2}]$ H : significant wave height [m]

4) Contraintes additionnelles

Contrainte de pente

Contrainte de conservation sableuse

$$\int_{\Omega} \psi(t, x) dx = \int_{\Omega} \psi_0(x) dx \quad \forall t \in [0, T]$$

Variable sand stock

constant sand stock

Figure 4. a) Contrainte de pente b) Conservation du stock sableux.

<u>II) Modèle OptiMorph</u> 5) Temps de calculs - Démonstration

▶ 500 itérations avec

Perse-ageins Organise Name Outer ************************************	Epingler a Copier Coller ccès rapide Coller le raccourci	Deplacer Copier Supprimer Renomme vers • vers • •	r Nouveau dossier	Proprietes	🔐 Inverser la sélection
 For a low bound of the second secon	Presse-papiers	Organiser	Nouveau	Ouvrir	wsLlocalhost\Ubuntu-22.94\homeironan\demo_comfuser_config.yaml - Notepad+ +
<pre>kactorapide kactorapide k</pre>	🗧 🐳 🕆 🧾 > Linux > Ubuntu-22.04 >	home > ronan > demo_conf		Eichi	er Édition Becherche Affichage Encodage Langage Paramétres Qutils <u>M</u> acro E <u>x</u> écution Plugins <u>W</u> indow <u>?</u>
<pre>Videos State: False Solution_x: 110 # geotube position x [m] DATA(D) DATA(D) Réseau A timux Videos State: False Solution_y: 10 # geotube position y [m] ONLY FOR 2D MODE I ength: 6 # geotube Length [m] Height: 2 # geotube height [m] Characteristic Solution Content of the solution Content</pre>	Collect is rapide Presse-papiers Accès rapide Bureau Téléchargements Documents Images Results demo Example_1D-linear-geotube Example_1D-linear-geotube Example_1D-linear-geotube Example_1D-linear-geotube Example_1D-linear-geotube Conson@ubELLW10-JBCLEI OneDrive OneDrive OneDrive OneDrive OneDrive OneDrive Objets 3D Téléchargements Vidéos Objets 3D Téléchargements Musique Nusique	vers vers vers v Organiser home > ronan > demo_conf Nom git git git git git gitginore gitgignore 	dossier Nouveau Modifié le 28/09/2023 11:36 28/09/2023 11:36 28/09/2023 11:36 28/09/2023 11:36 28/09/2023 11:36 27/09/2023 16:46 27/09/2023 16:46 27/09/2023 16:46 27/09/2023 16:46 27/09/2023 16:46 27/09/2023 16:46	Type Dossier de fichiers Fichier GITIGNORE Fichier OUT Fichier OUT PY 11 12 13 14 15 16 17 18 19	<pre>watheritation watheritation to an interpretion of the second of the</pre>

<u>II) Modèle OptiMorph</u> 6) Forçages – exemple + résultats

<u>II) Modèle OptiMorph</u> 6) Forçages – exemple + résultats

Seabed and wave evolution with parameters: H0 = 1.5 m - T0 = 8 s - h0 = 10 m

3) Modèle morphodynamique

$$\begin{split} \psi_t &: \text{ evolution of the seabed over time } \begin{bmatrix} m.s^{-1} \end{bmatrix} \\ \Upsilon &: \text{ abrasion of sand } \begin{bmatrix} m.s. & kg^{-1} \end{bmatrix} \\ \Lambda &: \text{ excitation of the seabed by the water waves} \\ \psi_0 &: \text{ initial seabed elevation } \begin{bmatrix} m \end{bmatrix} \\ d &= -\nabla_{\psi} J \end{bmatrix} + \text{ constraints : the decent direction } \begin{bmatrix} J.m^{-2} \end{bmatrix}$$

16

• Cost-function

$$J(\psi,t) = \frac{1}{16} \int_{\Omega_{\rm S}} \rho_{\rm w} g H^2(\psi,x,t) dx \quad \left[J.m^{-1} \right]$$

 $\Omega_{\rm S}$: shoaling zone [m] $\rho_{\rm w}$: water density [kg.m⁻³] g : gravitational acceleration $[m.s^{-2}]$ H : significant wave height [m]

III) L'approche d'Hadamard

1) Formalisme mathématique

$$\nabla_{\psi}J = \lim_{\varepsilon \to 0} \left(\frac{1}{\varepsilon} [J(\psi + \varepsilon \vec{n}) - J(\psi)] \right)$$

 $\psi + \varepsilon . \vec{n}_{\prime}$

17

where \vec{n} is the normal to the shape ψ .

At order 1 we will consider the following approximation:

$$\nabla_{\psi} J \approx \lim_{\varepsilon \to 0} \left(\frac{1}{\varepsilon} [J(\psi) + \varepsilon \overrightarrow{\nabla_X} J . \vec{n} - J(\psi)] \right)$$

with $X = \begin{pmatrix} x \\ y \end{pmatrix}$.

$$\nabla_{\psi}J = \nabla_X J.n$$

III) L'approche d'Hadamard 1) Formalisme mathématique

En posant ici J = H,

b) Erreur numérique calculée par rapport à la solution analytique.

<u>III) L'approche d'Hadamard</u>2) Implémentation dans notre modèle

$$\overrightarrow{\nabla_X H} = \begin{pmatrix} \frac{\partial H}{\partial x} \\ \frac{\partial H}{\partial \psi} \end{pmatrix} \qquad \vec{n} = \frac{1}{\sqrt{d\psi^2 + dx^2}} \begin{pmatrix} -d\psi \\ dx \end{pmatrix}$$

$$\left(\nabla_{\psi} H \approx \frac{\partial H}{\partial x} n_x + \frac{\partial H}{\partial \psi} n_y \right)$$

Figure 6. a) Solution analytique et approximative avec l'approche Hadamard sur un cas simple, b) Solution analytique et approximative avec l'approche Hadamard sur un cas perturbé.

1) Modèle hydrodynamique

2) Nouvelle fonctionnelle

Modèle	Fonctionnelle					
Spectral (f)	$J(\psi, t) = \frac{1}{16} \int_{\Omega} \rho_{\rm w} g H^2(x, t) dx$					
Temporel (t)	$J(\psi, t) = \frac{1}{16} \int_{\Omega} \rho_{\rm w} g \overline{S_{\eta}(x, t)} dx$					
avec $\overline{S_{\eta}(x,t)} = \frac{1}{n_T T_0} \int_{t-n_T T_0}^t \eta(t,x)^2 dt, n_T > 2$						
$\sqrt{\overline{S_\eta}} \sim H$						

3) Résultats fond linéaire (pente forte) - comparaison entre H et $\sqrt{3}$

3) Résultats fond linéaire (pente forte)

Figure 9. Evolution du fond marin sur 3 jours avec le modèle Saint-Venant.

IV) Couplage avec un modèle à résolution vagues à vagues: Saint-Venant 3) Résultats fond linéaire (pente forte) *Figure 10. Evolution du fond marin sur 3 jours avec les* modèles Saint-Venant, ShoalExpress, Swan, XBeach Bottom profile evolution after 3 days 6 10 Þ H = 1,5 m To = 8 sprofile ψ Saint-Venant ψ_0 Bottom η Saint-Venant ψ Shoaling ψSWAN SWL ψ XBeach 0 25 100 125 50 75 150 175 0 x - Distance [m]

3) Résultats fond linéaire (pente moyenne)

Figure 12. Evolution du fond marin sur 3 jours avec le modèle Saint-Venant.

Bottom profile evolution after 0 days

3) Résultats fond linéaire (pente moyenne)

Figure 12. Evolution du fond marin sur 3 jours avec le modèle Saint-Venant.

Bottom profile evolution after 3.0 days

3) Résultats fond linéaire (pente moyenne)

Figure 13. Evolution du fond marin sur 3 jours avec les modèles Saint-Venant, ShoalExpress, Swan, XBeach

Bottom profile evolution after 3 days

3) Résultats fond linéaire (pente moyenne) - <u>comparaison</u> entre H et $\sqrt{S\eta}$

Comparison between H and $\sqrt{S_{\eta}}$ on the same scale

3) Résultats fond linéaire (pente moyenne)

Figure 15. Evolution du fond marin sur 3 jours avec le modèle Saint-Venant.

Bottom profile evolution after 0 days

3) Résultats fond linéaire (pente moyenne)

Figure 15. Evolution du fond marin sur 3 jours avec le modèle Saint-Venant.

Bottom profile evolution after 3.0 days

Figure 18. Résultats hydro-morphodynamiques obtenus avec OptiMorph en utilisant l'approche Hadamard avec des modèles hydrodynamiques : Shoaling, SWAN et XBeach. Configuration bathymétrique de l'expérience du canal LIP 1C.

o) Intérêt d'un tel modèle ?

Avantages:

- De nouvelles variables pour notre fonctionnelle (u).
- Précision à chaque pas de temps.
- Notion du temps.

Inconvénients:

- Temps de calculs plus longs.
- Stabilité plus difficile à mettre en place.

<u>Suggestions</u> ? Un modèle vagues à vagues générant un $\sqrt{S\eta}$ (« Hs

like ») répondant à notre problématique ?

Références:

Merci de votre attention!

[1] M. Cook. Calcul optimal pour la modélisation de la dynamique naturelle des plages sableuses et la conception d'ouvrages de défense du littoral à faible impact anthropique. Theses, Université Montpellier, Dec. 2021.

[2] M. Cook, F. Bouchette, B. Mohammadi, and N. Fraysse. Application of Opti-Morph: Optimized beach protection by submerged geotextile tubes. Sept. 2021.

[3] M. Cook, F. Bouchette, B. Mohammadi, S. Meulé, and N. Fraysse. Opti-Morph, a new platform for sandy beach dynamics by constrained wave energy minimization. Aug. 2021.

[4] M. Cook, F. Bouchette, B. Mohammadi, L. Sprunck, and N. Fraysse. Optimal Port De- sign Minimizing Standing Waves with A Posteriori Long Term Shoreline Sustainability Analysis. China Ocean Engineering, 35(6):802–813, Dec. 2021.

[5] D. Isebe, P. Azerad, F. Bouchette, B. Ivorra, and B. Mohammadi. Shape optimization of geotextile tubes for sandy beach protection. International Journal for Numerical Methods in Engineering, 74(8):1262–1277, May 2008.

[6] D. Isebe, P. Azerad, B. Mohammadi, and F. Bouchette. Optimal shape design of de- fense structures for minimizing short wave impact. Coastal Engineering, 55(1):35–46, Jan. 2008.

[7] D. Isèbe, P. Azérad, F. Bouchette, and B. Mohammadi. Design of Passive De- fense Structures in Coastal Engineering. International Review of Civil Engineering (IRECE), 5(2):75, Mar. 2014.

[8] B. Mohammadi and F. Bouchette. Extreme scenarios for the evolution of a soft bed interacting with a fluid using the Value at Risk of the bed characteristics. Com- puters & Fluids, 89:78–87, Jan. 2014.

[9] B. Mohammadi and A. Bouharguane. Optimal dynamics of soft shapes in shallow waters. Computers & Fluids, 40(1):291–298, Jan. 2011.

[10] Dupont, Ronan, Megan Cook, Frédéric Bouchette, Bijan Mohammadi, and Samuel Meulé (2023), "Sandy beach dynamics by constrained wave energy minimization". In: Ocean Modelling, p. 102197,

VII) Perspectives

- Extension + validation du modèle en 2D
- Préparation d'une nouvelle conférence internationale: ICCE ? AGU ? ...
- Soumission du nouvel article
- Rédaction du chapitre 4 ...

<u>Définition de Y</u>

$$\begin{split} \psi_t + \frac{1}{1 - \lambda_p(x)} \operatorname{div} \left(q(x, t) \right) &= 0 \\ \psi_t &= -\frac{1}{1 - \lambda_p(x)} q_x = -\Upsilon(x) \Lambda(x) \nabla_{\psi} J(x, t). \\ \int_{x - \varepsilon}^{x + \varepsilon} \Upsilon(s) \nabla_{\psi} J(s, t) ds &= \int_{x - \varepsilon}^{x + \varepsilon} \frac{1}{1 - \lambda_p(s)} q_s(s, t) ds. \end{split}$$

$$\begin{split} \Upsilon(x) &= F(x,t) \frac{1}{1 - \lambda_p(x)}, \\ F(x,t) &= \frac{q(x + \varepsilon, t) - q(x - \varepsilon, t)}{2\varepsilon \overline{\nabla_{\psi} J}|_{(x,t)}} \\ \overline{\nabla_{\psi} J}|_{(x,t)} &= (1/(2\varepsilon)) \int_{x - \varepsilon}^{x + \varepsilon} \nabla_{\psi} J(s, t) ds \end{split}$$

$$\Upsilon = \overline{F} \frac{1}{1 - \lambda_p}$$

$$\overline{F} = \frac{q(x_R, 0) - q(x_L, 0)}{\int_{x_L}^{x_R} \nabla_{\psi} J(s, 0) ds}$$

39

III) L'approche d'Hadamard 3) Temps de calculs

		Hydrod	dynamic	Morphodynamic
Simulation with 180 points	Shoaling	SWAN	$XBeach^1$	Descent without hydrodynamic
Computation time with 1 iteration (s)	0.004	0.278	7.372	0.012
Total computation time with 500 iterations (s)	8	145	3692	6

Tab 2: Temps de calculs sur une grille de **180 points**.

VI) Application with Hadamard Approach + Discussion

1) Configurations en pleine mer

Evolution of ψ with differents hydrodynamic models and different bathymetry $H_0 = 2 m$, $T_0 = 12 s$, $h_0 = 20 m$, $\Omega = 1000 m$, Dynamic forcing

Figure 11. Évolution de psi en utilisant l'approche de Hadamard avec les modèles Shoaling (vert), SWAN (rouge) et XBeach (bleu). Simulation sur la configuration en pleine mer avec des configurations linéaires, convexes et concaves. Paramètres de simulation de H0=2 m, T0=12 s, h_0=20 m, Omega=1000 m.

VI) Application with Hadamard Approach + Discussion

1) Configurations en pleine mer - Discussion

Hydro-morphodynamic results with different breaking criterion γ Simulation with OptiMorph using SWAN model - $H_0 = 2 m$, $T_0 = 12 s$

2) Modèle hydrodynamique de base

Simple shoaling:
$$H(x,t) = \begin{cases} H_0(t)Ks(x,h) & \text{pour } x \in \Omega_S \\ \gamma h(x,t) & \text{pour } x \in \Omega_B \end{cases} \quad \Omega_B = \{x_i \in L | \frac{H_i}{h_i} < \gamma\}$$

Figure 3. Modèle hydrodynamique basé sur le critère de Shoaling.

<u>Appendix</u>

II) Rappel du modèle OptiMorph

3) Modèle morphodynamique – Justification de l'hypothèse

Minimize $F(x, y, y') = \int_0^R \frac{x}{1+y'^2} dx$

Optimal configuration

II) Présentation du modèle OptiMorph

MWL

3) Modèle morphodynamique – Justification de l'hypothèse

If in a rare medium, consisting of equal particles freely disposed at equal distances from each other, a globe and a cylinder described on equal diameter move with equal velocities in the direction of the axis of the cylinder, (then) the **resistance** of the globe will be half as great as that of the cylinder I reckon that this proposition will be not without application in the **building ships**.

MWL

Minimizing resistance on the boat (wave, friction) ⇔ minimizing the resistance of seabed