CROCO

Coastal and Regional Ocean COmmunity model

Journées de Modélisation des Vagues à Phases Résolues Ile d'Aix, 4 - 6 octobre 2023

Surf eddies and mixing in 3D wave-resolving models

P. Marchesiello, Simon Treillou (IRD, LEGOS)

L. Debreu, F. Auclair, J.C. McWilliams, R. Almar, R. Benshila, F. Dumas

Motivation

A need to assess the fate of coastal pollutants, sediments, ecosystems, people ...

coastal pollutants ...

Stationary and transient circulation

Channeled Rip Currents

Flash rips from short-crested waves

CROCO CoastaWhat about transient rips ?

- ✓ The nearshore zone is
 essentially non-stationary
 (Tang & Dalrymple, 1989):
 ▶ need for wave-resolving models
- ✓ Surfzone eddies affected by vertical shear (Marchesiello et al., 2021):
 ▶ need for 3D wave-resolving models

Flash rips in 2D Boussinesq wave-resolving models

2D wave-resolving Boussinesq model (Feddersen et al., 2011)

Flash rips in 2D Boussinesq wave-resolving models

2D wave-resolving Boussinesq model (Feddersen et al., 2011)

Too much VLF energy?

Feddersen et al. (2011) Also Spydell & Feddersen (2009) Kirby & Derakhti (2019)

CROCO Coastal and Regional Or 3D wave-resolving models

VOF/SPH LES models: "Direct" turbulence

Time scale < wave period

(Lubin & Glockner, 2015)

Free-surface RANS models:

Time scale > wave period

A turbulence model is needed for time scales < wave period

CROCO

Coastal and Regional Ocean COmmunity model

CROCO project: ✓ Accuracy & efficiency

- ✓ Realistic applications
- ✓ Large user community

CONSORTIUM

Non-hydrostatic solver

oNon-hydrostatic solver

Weakly compressible approach (Auclair et al., 2018)

In the nearshore, where long waves are slow, we can use a sound speed of order 10 m/s

on-hydrostatic solver

Weakly compressible approach

$$p = p_a + p_H + c_s^2 \rho_f \quad \blacksquare \quad P_{NH}$$

Homogeneous linearized equations $\partial_t u = -g \partial_x \eta - c_s^2 \partial_x \rho_f / \rho_0$ $\partial_t w = -c_s^2 \partial_z \rho_f / \rho_0$ $\partial_t \rho_f = -\rho_0 (\partial_x u + \partial_z w)$ Boundaty conditions $\rho_f|_{z=\eta} = 0$ $\partial_t \eta = w|_{z=0}$ $w|_{z=-H} = 0$

Local NH pressure correction

rather than global correction through elliptic solver:

better parallel performances

Exact boundary conditions

Efficiency:

- Small $c_s \ (\gtrsim \sqrt{gh})$
- ✤ Time-splitting

CROCO test cases: Coastal and Regional Ocean Community Chen et al. (2003)

Standing wave caused by a sinusoidal free-surface set-up

CROCO Sloshing test cases: Coastal and Regional Ocean Community model Chen et al. (2003)

Standing wave caused by a sinusoidal free-surface set-up

Non-Hydrostatic Case

JMVPR2023

0

2

3

4

5

time (periods)

6

7

8

9

Wavemaker correction

CROCO Wavemaker with frequency and directional spreading

Coastal and Regional Ocean COmmunity model

CROCO Wavemaker correction for the standing wave problem Coastal and Regional Ocean Community model

Darlymple (1975), Salatin et al. (2021)

Wave-resolving models generally use a classical double summation wave-maker:

... leading to wave coherence, i.e., stationary interferences between waves of different directions with same frequencies (phase-locking)

CROCO

Wavemaker correction for the standing wave problem

Darlymple (1975), Salatin et al. (2021)

Wave-maker modification such that all wave

components have distinct frequencies and

Wave-resolving models generally use a classical double summation wave-maker:

directions: $\eta_{bc}(y,t) = \sum a_i \sum d_j \cos(k_{y,i,j}y - \omega_i t - \phi_{ij})$ $\eta_{bc}(y,t) = \sum_{i} a_{i}d_{i}cos(k_{y,i}y - \omega_{i}t - \phi_{i})$ Directional spread Amplitude depending on a frequency spectrum Littoral drift **Directional Spectrum** x 10 1.6 -1.4 1.2 -0.8 -0.6 -0.4 0.2 direction [dea] Tious Use of sub-frequencies for each bin inside the frequency band Wave directional spread -200 -150 -100 -150 -100

Validation of nearshore waves and currents with laboratory experiments

Scheldt Wave Flume (Deltares)

 ✓ Resolution: 6 cm, 10 sigma levels
 ✓ Breaking-induced turbulence: WENO5 + k-ω model

Validation with flume experiments GLOBEX (B2) - Michalet et al. (2014)

LIP-11D (1B) - Roelvink & Reniers (1995)

Delta Flume (Deltares)

Turbulence model : **overmixing** in potential flow region

Well-known problem: the stagnation point anomaly (Launder and Kato, 1993)

Overmixing when $\Omega \ll S$

$$S_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \quad \text{Strain}$$
$$\Omega_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} - \frac{\partial u_j}{\partial x_i} \right) \quad \text{vorticity}$$

Stabilized turbulence closure

Larsen & Fuhrman (2018), Marchesiello & Treillou (2023)

A stabilized turbulence model (limiting P) is needed in potential flow regions to maintain innershelf stratification

$$\begin{cases} \frac{\partial k}{\partial t} = \mathbf{P} - \epsilon \\ \frac{\partial \omega}{\partial t} = \frac{\omega}{k} (c_{\omega 1} \mathbf{P} - c_{\omega 2} \epsilon) \end{cases}$$

Boussinesq hypothesis

$$P = -\overline{u_i' u_j'} \frac{\partial u_i}{\partial x_j} = 2\nu_t S^2$$

limitation when $\Omega/S < \lambda$

JMVPR2023

3D application to a natural beach

JMVPR2023

CROCO Coastal and Res<mark>Shallow vs. Deep breaking experiments</mark>

JMVPR2023

CROCOWave-mean vertical vorticity patterns Coasta and Regional Ocea Flash rips and mini-rips

MVPR2023

onal Ocean Rib structures in turbidity with a suspended sediment model

Turbidity patterns (brown) and foam/convergence lines (white)

Vertical Shear instability spanwise rollers & streamwise vortices

Vertical shear instability Energy productional Community model

Cross-shore distance (m)

OCO astal and Regional Ocean Distal and Regional Ocean Distal and Regional Ocean Distal Provided Iless VLF, more IG eddies

CROCO Coastal and Regional Open Coastal and

Nearshore mixing

PR2023

Nearshore mixing IB09 tracer experiment PhD thesis of Simon Treillou

* IB09 experiment for nearshore mixing in the Southern California Bight (Hally-Rosendahl & Feddersen, 2016)

Hally-Rosendahl & Feddersen (2016)

IB09 modeling with Funwave

Hally-Rosendahl & Feddersen (2016)

Reasonable results with 2D wave-resolving model, but:
underestimates mixing in the surfzone
overestimates exchange with the inner shelf

a necessary "background" diffusion in 2D models

Geiman et al. (2011): model-data comparison of drifter dispersion

IB09 CROCO modeling

IB09 CROCO modeling

Shallow breaking (3D)

Deep breaking (2D)

Surfzone mixing

2D without

2D with

background diffusivity background diffusivity background diffusivity 1200 1000 1000 1000 800 800 800 (iii) (m) (m) (m) (m) w 400 400 400 200 200 200 0 -300 -300 -100 -50 0 -300 -250 -150 -100 -50 0 -250 -200 -150 -100 -50 0 -250 -200 -150 -200 x (m) x (m) x (m)

JMVPR2023

3D without

Effective diffusivity $\kappa_r \sim 1 \text{ m}^2 \text{s}^{-1}$ (Clark et al., 2010)

Breaking waves (Svenden et al., 1987)

$$\kappa_x \sim 0.01 \sqrt{gh^3} \sim 0.04 \text{ m}^2 \text{s}^{-1}$$

Shear dispersion (Pearson et al., 2009)

Surf eddies (Clark et al., 2010)

 $\kappa_x \sim 0.1 U L \sim 1 \text{ m}^2 \text{s}^{-1}$

Effective diffusivity

Shear dispersion

(monochrom. waves no perturbation)

Shear dispersion + mini-rips

Shear dispersion + mini-rips + Flash rips

Effective diffusivity

Estimation of surfzone cross-shore diffusivity (Clark et al., 2010):

$$\kappa_{xx} = \frac{1}{2} \frac{d\sigma^2}{dt} \quad \text{with} \quad \sigma^2 = \frac{\int_{-x_b}^0 [x]^2 \bar{D}(x, y) dx}{\int_{-\infty}^\infty \bar{D}(x, y) dx}$$

Effective diffusivity

CONCLUSIONS munity mode

- Free-surface, wave-resolving RANS models are now ready for realistic nearshore problems
- Vertical shear alters nearshore dynamics
 - Shear instability produces mini rips: intermediate range of turbulence (within IG range)
 - Reduces inverse cascade toward VLF (flash rips)
 - Reduces instability of longshore drift

Impact on nearshore dispersion

- Weaker flash rips reduce surf-shelf exchange
- Shear dispersion and mini-rips provide fast mixing in the surfzone (background diffusivity)

