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INTRODUCTION

MOTIVATION: SIMULATION OF WAVE PROPAGATION IN A (]f[N]'l'}*I) COMPUTATIONAL DOMAIN

LINEAR :
SCHRODINGER N
EQUATION o Time evolution of

9l

[
10t -+ AY+V (2, t, =0 o
1O+ AY+V (2, t,9) . At =0.2

Potential V(z) =« o
Initial Data: * o B 0 %
Yo(z) = o’ +10iz

=] b = 2023/10/04 — ILE D'AIX
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MOTIVATION: SIMULATION OF WAVE PROPAGATION IN A (]f[N]'l‘}*I) COMPUTATIONAL DOMAIN

LINEAR :
SCHRODINGER N
EQUATION o Time evolution of
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Potential V(z) =« o
Initial Data: * o B 0 %
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ERICAL SOLUTION

Homogeneous Dirichlet
conditions:

Y =0 t -

= Unphysical reflections
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INTRODUCTION
TYPICAL EQUATIONS FOR (SMALL AMPLITUDE) WATER WAVES

KORTEWEG-DE VRIES (KDV) EQUATION IN R

Bets + B+ %Euazu +E0%u=0, (z,) eRx[0;T]

(KdV) lim  wu(x,t) =0, t € [0;7]
|z| =400
u(z,0) = uo(z), zeR

BENJAMIN-BONA-MAHONY (BBM) EQUATION IN R

(1= L 02)0u+ ,u+ ?;—Euazu —0, (2,£) €Rx [0;T]

(BBM) lim  wu(x,t) =0, t € [0;7]
|z|——+o0
u(z,0) = uo(x), z€eR
o u(x,t) : real function
@ uo has support compact in 2
@ unidirectional propagation of weakly nonlinear water-waves.

@ . : dispersion parameter, ¢ : amplitude parameter

o =l = 2023/10/04 — ILE D'AIX



INTRODUCTION
TYPICAL EQUATIONS: A HYPERBOLIC VERSION OF THE KpV EQUATION

@ Phase velocity and group velocity of KdV equation are unbounded: not
consistent with water wave propagation
@ Hyperbolic version of water wave models (S Gavrilyuk and co-authors).

EXAMPLE: HYPERBOLIC VERSION OF KDV (H-KDV) EQUATION IN R

Oru + uOzu + poz) = 0,
a,,w+@ =0, Op-—
|z\li>nioo lu(z, )| + |[¥(z, )| + p(z, )| = O, t € [0;T]
u(z,0) = uo(z),¥(z,0) = Yo(z),p(z,0) =po(z) z€R

Lp; A (,t) € R x [0;T]

(HKdV)

Formally, as 7 (relaxation parameter) goes to 0, one has:
P = Ozt + TOtzzu + 0(72), Y = Opatt + 7 (Otwaats — Orgu) + 0(7'2),
Ot (u — TOraU + TOrzazt) + uOzu + UOzau = 0(7'2).

o V. Duchene: Rigorous justification of the Favrie-Gavrilyuk approximation to the
Serre-Green-Naghdi model, Nonlinearity (2019)

o b = 2023/10/04 — ILE D'AIX



INTRODUCTION
BBM-BOUSSINESQ EQUATIONS

o KdV or BBM equations model “one way/right going”-water wave and discard
the other “left-going” wave.

@ Bona, Chen and Saut considered Boussinesq-BBM type equations:

MIXED BOUSSINESQ-BMM EQUATION IN R

(1 — b022)0n + Ozt + a0zzau = 0,
(1 = dOsz)0tt + Oun) + COzzan = 0. (z,t) € R x [0; 7]

d
(HKdV) mlijl}roo lu(z, t)] + [n(z,t)| = 0, te[0:7)
u(z,0) = uo(z),n(x,0) = no(x), I

@ ug, 1o have compact support in an interval [z¢, z,].
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STRATEGY I: DERIVE TRANSPARENT BOUNDARY CONDITIONS
EXAMPLE: AIRY EQUATION

dwu+ d2u =0, sur R x [0;7). J
left exterior E E right exterior

problem E E problem

H
H H
! interior problem !

t=0
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STRATEGY I: DERIVE TRANSPARENT BOUNDARY CONDITIONS
EXAMPLE: AIRY EQUATION

dwu+ d2u =0, sur R x [0;7).

left exterior : : right exterior
problem : : problem

AAA/\/\/\ /\

H
! interior problem !

t=1

BC are different on left and right (odd number of BC)
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STRATEGY I: DERIVE TRANSPARENT BOUNDARY CONDITIONS

EXAMPLE: AIRY EQUATION

@ Split the original eqs into a coupled eqgs on interior and exterior domains
@ Apply the Laplace transform in time ¢

@ Solve the ODEs in z

@ Select finite energy solution (decreasing |z| — +00)

@ lIdentify Dirichlet and Neumann data at z;

@ Inverse Laplace transform

AIRY EQUATION SET IN Q € (2, ;)

Oru + 3u = 0, t,x) € (0,T) X (z¢, zr),
u(0,2) = uo(z), supp(uo) € Q, z € (ze, Zr),

073w — 8} 0pu + 02u =0, (t,z) € (0,T) x x,

0 Pu+0,u=0, 8/%u—82u=0, (tz)e(0,T)x {z}.

o Applications: linear equations (KdV, BBM , Schrodinger), nonlinear equations
(mostly Schrodinger and nonlinear wave eqs) through paradifferential calculus

@ Nonlocal BC (Memorize the solution): Padé approximant to get local BC

@ 2D-problems: issues in the corner (coupling two stable BC in two orthogonal
half plane may be unstable)

=] b = 2023/10/04 — ILE D’AIX



STRATEGY II: PERFECTLY MATCHED LAYERS (AFTER BERENGER
1994) FrROM P. JOLY LECTURE NOTES

@ Add an artificial absorbing layer around the computational domain

o “Perfectly Matched”: waves do not reflect at the interface between PML and
non-PML domains

@ Principle (absorption in the z direction): transformation 9, — (1 +i$)’181
(in the frequency domain)

EXAMPLE: 2D TRANSPORT EQUATION J

U + Vy0,U + Vy0,U =0

PML COUNTERPART IN THE 2-DIRECTION: SPLITTING U = U?* + UY
OU” + o(x)U” + V0, (U* +UY) =0, 0 UY+ Vy0,(U° +U") =0 J

@ Systematic derivation and easy implementation
o Treatment of corners is simple

@ Main drawbacks: mathematical not completely understood and examples of
instabilities.

o b = 2023/10/04 — ILE D'AIX



@ INTRODUCTION

© PML EQUATIONS FOR THE LINEARIZED KDV EQUATION

© PML EQUATIONS FOR A HYPERBOLIZED VERSION OF KDV

@ PML ror THE BBM-BOUSSINESQ EQUATIONS



PML EQUATIONS FOR THE LINEARIZED KDV EQUATION
DERIVATION OF THE PML EQUATION

LINEARIZED KDV EQUATION IN THE FREQUENCY DOMAIN

—iwu + Udzu + €0rzzu = 0.

e Transformation 0, — (1 + i@)’laz and auxiliary functions
Ozu = (1+ Z—U)ul, dru1 = (1+ Z—U)UQ.
w w

PML EQUATION FOR THE KDV EQUATION

owu + ou + Udzu + edyuz = 0,
Or(ur — Ozu) + our =0, O¢(uz — Opur) + ouz =0

Stability of PML equations:
Q If U =0, the PML equations are always unstable.
@ If eU < 0, the PML equations are stable if and only if |¢|k? > 16|U|
@ If eU > 0, the PML equations are stable if and only if 3|e|k? < |U|.

e Remark: a necessary stability condition (classical for PML):

vg(k)vy (k) = (U — 3ek?) (U — ek?) > 0.

2023/10/04 — ILE D'AIX



PML EQUATIONS FOR THE LINEARIZED KDV EQUATION
NUMERICAL SIMULATION OF THE PML EQUATIONS

U=04, Ief = [-5,5], 0(z) = go(max(0,z — 5)* + max(0, —z — 5)*)
uo(z) = exp(—40(z + 3)?), 6z = 0.05 6t = = (CFL = 1)
Finite centered difference method and Crank-Nicolson scheme in time.

. - . . 2 .
Discretized equations stable if ¢ < g, = U‘;‘” and unstable if € > €. or eU < 0.
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FIGURE: Representation of the function v(t, z) = log(1 + 1000|u(¢, z)|) in the (x,t) plane
[—8,8] x [0,200]. On the left (stable case): € = Udz?/4. The solution is the Airy solution
advected on the right with speed U. The outgoing waves are damped in the absorbing

layers. On the right (unstable case): e = Udx?2/4. The left going waves grow exponentially
fast in the “absorbing” layer
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HYPERBOLIZATION OF KDV EQUATIONS
DISPERSION RELATION

RELAXATION OF KDV EQUATION

0, —
Oru + uOyu + udyp =0, Otp — =0, at¢'+y

8’:1)7_1’& =0, (1)
T

U-c
1+ 7e)(p+ TcU — 1¢2)

o ciau(k) E]% —/ UTQ + £,U] and two velocities in | — oo,—%]u]% + UTQ + £,U]

@ Dispersion relation: k2 =

FIGURE: Dispersion relation for linearized KdV equation and system (1) (blue: KdV)

=l =2 2023/10/04 — ILE D'AIX



HYPERBOLIZATION OF KDV EQUATIONS

ADDITIONAL PROPERTIES: RIEMANN INVARIANTS-CONSERVATION LAwWS

Characteristic velocities:

Riemann Invariants:

)

¢+/“Ai(s)ds:¢+g>\iiw )

An additional conservation law:

uop? P u o p pp®
LN IR OV o R )
(2T+“2+“2)t+(37+ v )2

T 27
even a Lagrangian formulation....

2023/10/04 — ILE D'AIX



HYPERBOLIZATION OF KDV EQUATIONS

NONLINEAR WAVES: DISPERSIVE SHOCK WAVES AND TWO-SOLITONS

4’
:

FIGURE: On the left: dispersive shock with step 1. On the right: A two soliton solution

Questions:
o Does hyperbolization-relaxation helps for PML?

o Nonlinear TBC through Riemann Invariants (work in progress with S.
Gavrilyuk)?

= =2 E 2023/10/04
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PML EQUATIONS FOR HYPERBOLIZED KDV EQUATIONS

DERIVATION OF THE PML EQUATIONS

FuLL PML EQUATIONS
Owu + ou+ Udyu + pudzp =0, Op+op— M*‘ g‘f’zov

-
Oz —
p+op+ =—L-2q=0, do=v, adq=p.

PML FOR THE FIRST ORDER SYSTEM (NOT PM FOR THE FULL SYSTEM)

8tu—|—c7u+U&cu+M3x1lJ:0, 8tp+o—p_azp%¢:

Oru —
atw+aw+%=o.

0,

@ The later system admits a conservation law with a damping term:

2 2 2 2 2 2
0 (“—+up i >+a (“— +u(102+1,02)>+8z (U“—Jrﬁwu— &> =
27 2 T 2r T 2T

o The first system always generates instabilities, the second one is stable but not
perfectly matched.

o b = 2023/10/04 — ILE D'AIX



PML EQUATIONS FOR HYPERBOLIZED KDV
NUMERICAL SIMULATIONS
o U =1, e = 56x> (unstable case for the full PML system)
o Relaxation parameter T = 107, CFL=0.3, §z = 0.02
o uo(z) = exp(—40(z + 2)?)

FIGURE: Representation of the function v(t, z) = log(1 + 1000|u(t, z)|) in the (x,t) plane
[—8, 8] x [0,10]. On the left: partial “stable” PML conditions. On the right: complete
“unstable” PML conditions. At time ¢t ~ 9, a numerical instability occurs.
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PML rOR THE BBM-BOUSSINESQ EQUATIONS

PROPERTIES

We consider “bi-directional” models (both right and left going waves) introduced
by Bona, Chen and Saut

BBM-BOUSSINESQ EQS

(1 - baxx)atn aF azvu = aaxac:cu = 07

DISPERSION RELATION

2 (1 — ak?)(1 — ck?)

“b(k) = K T pEy T ko)

Some particular cases where the system is well-posed:
o Pure BBM-type system: a=c=0,b=d=1/6
o Pure KdV-type system: b=d =0, a=c=1/6

@ Boussineq system (linearized Serre-Green-Naghdi eqs): a =b=c¢ =0 and
d=1/3.

o b = 2023/10/04 — ILE D'AIX



PML rOR THE BBM-BOUSSINESQ EQUATIONS

PML EQUATIONS

Derivation of PML equations:
e O — —iw and 9, — (1+ 2)710,
e Auxiliary functions n; = (1+ )7 '9,mi1, ui = (14 “2) " 0pu;_q fori =1,2.

PML EQS
Or(n —bnz) + o(n — bnz) + 0z (u + auz) = 0,
O (u — duz) + o(u — dug) + 0z (n + cn2) = 0, @)
Oc(m — 0am) +om =0, Oe(n2 — o) +on2 =0,
O (ur — Ozu) + our =0, O¢(uz — Ozur) + ouz = 0.

o Dispersion relation: k +— (1 + %’)_1k in the original dispersion

o Necessary stability condition: o — 0, roots bifurcating from two (k)

dwo(k)

ve(k)vg(k) >0, wv,(k) = » vg(k) = dk

=] b = 2023/10/04 — ILE D'AIX



PML rOR THE BBM-BOUSSINESQ EQUATIONS

STABILITY RESULTS FOR PML

We can prove (linear) stability in the cases
@ Boussinesq equation: a=b=c=0and d >0
@ Shallow water equations with surface tension: a =b=d=0and c <0
@ BBM-KdV type: a=d=0,6>0,c<0orb=c=0,d>0,a<0.

Arguments:

o Asymptotic expansion of solutions to the dispersion relation as o — 0

@ No crossing argument to prove that the imaginary part Im(w) < 0 for all o > 0.

(=} = = 2023/10/04 — ILE D’AIX



PML rOR THE BBM-BOUSSINESQ EQUATIONS
NUMERICAL RESULT FOR A RIGHT GOING WAVE (l’(])\"Y TYPE Sl!\]l,][/]\W‘[ON)
@ Boussinesq equation: a =b=c=0and d=1/3
e Domain of interest [—6,6]. PML Domain [—10, 10]
o Absorption coefficient: o(z) = max(xz — 6,0)* + min(0, z + 6)*
o Hyperbolic right going wave: 1(0,z) = u(0,2) = exp(—=?). Dispersive right
going wave: u(0,z) = (1 — ddz.)~*/?n(0,z)

fro0 surface

F1GURE: Unidirectional propagation: plots of log(1 + 1000|n(t, z)|) where n(z,t) is the
solution of Boussinesq egs. On the left: “Hyperbolic” right going wave. There is a
significant amount of the solution that propagates to the left. On the right: the initial
condition is given by “dispersive”’ right going wave. The left-going part of the solution is
negligible.

=] b = 2023/10/04 — ILE D'AIX



CONCLUSION

@ Full stability resultats for PML equations for KdV equation, hyperbolized
version of KdV and Boussinesq eqs

@ PML is not suitable for KdV, partially for the hyperbolic version:
hyperbolization does not help.

@ PML works for large class of BBM-Boussinesq equations

© DTBC are better when vy (k)v,(k) < 0 (which is a common situation in
dispersive problems).

Future works:

@ Consider TBC for hyperbolic models with relaxation: either dissipative or
dispersive like Favrie-Gavrilyuk model or LCT model (approximation of the
Serre-Green-Naghdi equations)

@ Consider injection problems (in particular for hyperbolic equations with
relaxation): impact of the order of the scheme (treatment of the ghost points)

=] b = 2023/10/04 — ILE D'AIX
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