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Objectives

Postdoc supported by Institut des Mathématiques de la Planète Terre
Supervision : David Lannes and Philippe Bonneton

Long term goal: study extreme waves in littoral area
Need accurate dispersive model: Boussinesq-type systems
Boundary conditions are difficult to deal with
Recently: Perfectly Matched Layer, source function method→ costly

→We propose a new and efficient method for boundary conditions.
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Boussinesq-Abbott: dispersive model over flat bottom

Consider the Boussinesq-Abbott system ∂tζ + ∂xq = 0

(1 − κ2∂2
xx )∂t q + ∂x fNSW(ζ, q) = 0

in (0, `) (BA)

with generating boundary conditions

ζ(t , 0) = g0(t), ζ(t , `) = g`(t), (1)

where g0, g` ∈ C(0,T) and

κ2 = H2
0/3, fNSW(ζ, q) = hu2 + gh2/2

z

Free surface

−H0

h(t, x) = H0 + ζu(t, x)

q = hu

0

ζ(t, x)
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Reformulation of the model

How to account for boundary conditions? How to recover q|x=0,`?
Hyperbolic case (κ = 0) : Riemann invariants
Dispersive case (κ > 0) : need to invert (1 − κ2∂2

xx )→ requires knowledge on ∂t q|x=0,`

Lannes and Weynans 2020 “Generating boundary conditions for a Boussinesq system”

Fix 0 ≤ t ≤ T, then y(x) = ∂t q(t , x) satisfies an ODE of the formy − κ2y ′′ = φ(x)
y(0) = q̇|0 , y(`) = q̇|`

Equivalently: y = yh + yb with

yh − κ
2y ′′h = 0

yh(0) = q̇|0 , yh(`) = q̇|`
and

yb − κ
2y ′′b = φ(x)

yb (0) = yb (`) = 0

Define R0 as the inverse of (1 − κ2∂2
xx ) with homogeneous Dirichlet conditions. Then

∂t q = −R0∂x fNSW︸       ︷︷       ︸
yb

+ s(0)q̇|0 + s(`)q̇|`︸           ︷︷           ︸
yh

where
{

(1 − κ2∂2
x )s(0) = 0

s(0)(0) = 1, s(0)(`) = 0
and

{
(1 − κ2∂2

x )s(`) = 0
s(`)(0) = 0, s(`)(`) = 1

. (2)
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Reformulation of the model

Note R1 the inverse of (1 − κ2∂2
xx ) with homogeneous Neumann conditions

Proposition 1 (Equivalent formulation with nonlocal flux)

Let (ζ, q) initially equal to (ζ in, qin). The two assertions are equivalent:
1 The pair (ζ, q) satisfies (BA) with generating conditions ζ(·, 0) = g0 and ζ(·, `) = g`
2 The pair (ζ, q) satisfies∂tζ + ∂xq = 0

∂t q + ∂x (R1fNSW) = s(0)q̇|0 + s(`)q̇|`
in (0, `), (3)

with (
s′(0)(0) s′(`)(0)
s′(0)(`) s′(`)(`)

) (
q̇0

q̇`

)
=

1
κ2

(
(R1 − id)|0 fNSW

(R1 − id)|` fNSW

)
−

(
g̈0

g̈`

)
(4)

Sketch of the proof:
To get (3), check that R0∂x = ∂xR1.
Apply ∂x to the discharge eq. from (3); take the trace at x = 0, ` to get (4).

∂2
xt q︸︷︷︸
−∂2tt ζ

+ (∂xxR1fNSW)︸        ︷︷        ︸
1
κ2

(id−R1)fNSW

= s′(0)q̇0 + s′(`)q̇`
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Other boundary conditions

Possibility to enforce general boundary conditions

ξ+[ζ, q](t , 0) = g0(t), ξ−[ζ, q](t , `) = g`(t). (5)

For instance, ξ± given by q or Riemann invariants

R±(U) = u ± 2
√

gh.

Adapt trace ODE in terms of missing data (outgoing information ξ−0 and ξ+` )

(
s′(0)(0) s′(`)(0)
s′(0)(`) s′(`)(`)

)
d

dt

(
q(ξ±0 )
q(ξ±` )

)
=

1

κ2

(
(R1 − id)|0 fNSW

(R1 − id)|` fNSW

)
−

d2

dt2

(
ζ(ξ±0 )
ζ(ξ±` )

)0 `

ξ+0 ξ−0 ξ+` ξ−`
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Numerical scheme for the reformulated system

Discretize (0, `) as follows:

•
0

x1
•
∆x

x2
• • •

` − ∆x

xN−1
•
`

xN

Note Un
i = (ζn

i , q
n
i )T the approximation of

1
∆x

∫ xi+1/2

xi−1/2

(
ζ
q

)
(tn, s) ds.

Time stepping procedure

Step 1: Define R1fn
NSW as the vector v ∈ RN satisfying
vi − κ

2 vi+1 − 2vi + vi−1

∆x2
= fNSW(Un

i ) for 2 ≤ i ≤ N − 1

v2 − v1

∆x
=

vN − vN−1

∆x
= 0

.

Similar definition for s(0) and s(`).
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Numerical scheme for the reformulated system

Time stepping procedure

Step 2: Approx. trace ODEs using FD scheme to get δt qn
1 , δt q

n
N ; Update border valuesqn+1

1 = qn
1 + ∆tδt qn

1

qn+1
N = qn

N + ∆tδt qn
N

and

ζn+1
1 = g0(tn+1)
ζn+1

N = g`(tn+1)
.
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ζn+1
1 = g0(tn+1)
ζn+1

N = g`(tn+1)
.

Step 3: For 2 ≤ i ≤ N, finite volume update with Lax-Friedrichs numerical flux
ζn+1

i − ζn
i

∆t
+

1
∆x

(
qn

i+1/2 − qn
i−1/2

)
= 0

qn+1
i − qn

i

∆t
+

1
∆x

(
(R1fn

NSW)i+1/2 − (R1fn
NSW)i−1/2

)
= (s(0))iδt qn

1 + (s(`))iδt qn
N

.
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Numerical scheme for the reformulated system

Second order extension: MacCormack (prediction-correction)

Advantage: no sponge layer required

Incoming solitary wave
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Numerical scheme for the reformulated system

∆x Lax-Friedrichs MacCormack

L2-error Order L2-error Order
0.569662 0.052002 – 0.020162 –
0.284831 0.040773 0.35 0.003910 2.37
0.142416 0.024022 0.76 0.000767 2.35
0.071208 0.012777 0.91 0.000161 2.25
0.035604 0.006621 0.95 0.000037 2.12

Table: Error for incoming soliton (ζ enforced)

∆x Lax-Friedrichs MacCormack

L2-error Order L2-error Order
0.284831 0.024246 – 0.001088 –
0.142416 0.014574 0.73 0.000314 1.79
0.071208 0.008471 0.78 0.000101 1.64
0.035604 0.004751 0.83 0.000029 1.80
0.017802 0.002559 0.89 0.000008 1.86

Table: Error for outgoing soliton (ζ enforced)
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Boussinesq-Peregrine system with varying bottom

Account for varying bottom with Boussinesq-Peregrine in (ζ, q)-coordinates{
∂tζ + ∂xq = 0
(1 + hbTb )∂t q + ∂x fNSW = −gh∂xb in (0, `) , (BP)

under generating boundary conditions

ζ(t , 0) = g0(t), ζ(t , `) = g`(t),

with hb = H0 − b (depth at rest) and

Tb (·) = −
1

3hb
∂x

(
h3

b∂x
(·)
hb

)
+

(·)
2
∂2

xb , (6)

z

Free surface

Rigid bottom

h(t, x) = H0 + ζ − bu(t, x)

−H0

0

ζ(t, x)

b(x)
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Boussinesq-Peregrine system with varying bottom

Note R0
b the inverse of (1 + hbTb ) with homogeneous Dirichlet conditions. Then

∂t q = −R0
b∂x fNSW − gR0

b (h∂xb) + s(b ,0)q̇|0 + s(b ,`)q̇|` (7)

where
{

(1 + hbTb )s(b ,0) = 0
s(b ,0)(0) = 1, s(b ,0)(`) = 0

and
{

(1 + hbTb )s(b ,`) = 0
s(b ,`)(0) = 0, s(b ,`)(`) = 1

.

Lemma 1 (generalization of R0∂x = ∂xR1)

We can construct a nonlocal operator R1
b such that

R0
b∂x (·) =

1
α

(∂x + φ)
[
h2

bR1
b

( (·)
h2

b

)]
− R0

b

(
(·)φ

)
with α = 1 +

1
4

(∂xb)2 and φ =
3
2
∂xb
hb

Definition 1 (Nonlocal flux and source terms)

f = h2
bR1

b

( fNSW

h2
b

)
, S = R0

b (−gh∂xb) −
φ

α
f + R0

b
(
φfNSW

)
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Boussinesq-Peregrine system with varying bottom

Proposition 2 (Equivalent formulation with nonlocal flux)

Let (ζ, q) initially equal to (ζ in, qin). The two assertions are equivalent:
1 The pair (ζ, q) satisfies (BP) with generating conditions ζ(·, 0) = g0 and ζ(·, `) = g`
2 The pair (ζ, q) satisfies

∂tζ + ∂xq = 0,

∂t q +
1
α
∂x f(U, x) = S(U, x) + s(b ,0)q̇0 + s(b ,`)q̇`

in (0, `) (8)

and the trace equations(
s′(b ,0)(0) s′(b ,`)(0)
s′(b ,0)(`) s′(b ,`)(`)

) (
q̇0

q̇`

)
= Φ

(
q|0,` , f|0,` , ∂xR0

b |0,`
(φfNSW − gh∂xb)

)
−

(
g̈0

g̈`

)
(9)

where Φ : R3 → R2 known.
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Enforcing waves through boundary conditions

Question: starting from a wrong initial condition, can we recover the solution by enforcing
appropriate boundary conditions?

Setup:
approximate Uref solution in (−`, 2`) with periodic conditions;
extract g0(tn) := σ(tn)ξ+[Uref]|0 (tn) and g`(tn) := σ(tn)ξ−[Uref]|` (t

n);
approximate new solution in (0, `), initially at rest, with g0, g` enforced at boundaries;

Figure: Initial condition ((2πH0)2/λ2 = 0.31, a0/H0 = 0.25)
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Enforcing waves through boundary conditions

Comparing different boundary conditions
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Enforcing waves through boundary conditions

Error to reference solution for different boundary conditions
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Coupling Boussinesq-Peregrine and shallow water models

Motivation: wave breaking with dispersive models→ non physical oscillations.

NSW

ζ

Boussinesq model

→ Cancel dispersive term near shock wave
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Coupling Boussinesq-Peregrine and shallow water models


∂tζL + ∂xqL = 0
∂t qL + 1

α
∂x f(UL) = S(UL) + s(b ,0)q̇L|0 + s(b ,`1)q̇L|`1

in (0, `1)

∂tζR + ∂xqR = 0
∂t qR + ∂x fNSW(UR) = −ghR∂xb

in (`1, `2)

(10)

Coupling conditions: R+(UR)|`1 = R+(UL)|`1 , R−(UL)|`1 = R−(UR)|`1

0 `1 `2Boussinesq-Peregrine NSW

In practice, overlapping helps to reduce oscillations/reflections

1 Approx. Un+1
R with FV scheme + hydrostatic reconstruction; R+(UR)|`1 = R+(UL)|`1

2 Approx. Un+1
L with Lax-Friedrichs scheme + trace equations; R−(UL)|`1+ε = R−(UR)|`1+ε

3 Convex combination in overlapping area: Un+1
i = ρ(xi)Un+1

L,i + (1 − ρ(xi))Un+1
R,i .
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Experimental testcase: LEGI
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Approximate transparent boundary conditions

Use coupling as a sponge layer to evacuate waves.
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Figure: Outgoing soliton at times t = 0, 9.46, 14.19, and 23.16 [s]. Green domain corresponds to NSW.
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Conclusion and perspectives

Over a flat bottom:

Reformulation of Boussinesq-Abbott

Generalized boundary conditions

Efficient 1st and 2nd order schemes

Over a varying bottom:

Approach extended to Boussinesq-Peregrine

Coupling with shallow water model

Implementation + validation (experimental data, various boundary conditions tested)

Perspectives:

Implement scheme in UHAINA

Extension to Boussinesq models with improved dispersion relation

Statistics of extreme waves: impact of bathymetry

Thank you for your attention!
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Riemann invariants

If (h, q) solves the shallow water system, then the Riemann invariants satisfy∂tR+(h, q) + λ+(h, q)∂xR+(h, q) = 0
∂tR−(h, q) + λ−(h, q)∂xR−(h, q) = 0

with R± = u ± 2
√

gh and λ± = u ±
√

gh.

For flat bathymetry, R± remains constant along characteristics.

Natural choice of outgoing data in fluvial regime (|u| <
√

gh).

In the shallow limit H2
0/L

2 → 0, Boussinesq models degenerate into shallow water.
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General boundary conditions

We wish to enforce more general boundary conditions

ξ+[ζ, q](t , 0) = g0(t), ξ−[ζ, q](t , `) = g`(t), (11)

Assume there exists a smooth map H : ξ±[ζ, q] 7→ (ζ, q):(
s′(b ,0)(0) s′(b ,`)(0)
s′(b ,0)(`) s′(b ,`)(`)

) (
Ḣ2|0
Ḣ2|`

)
= Φ

(
H2|0,` , f|0,` , ∂xR0

b |0,`
(φfNSW − gh∂xb)

)
−

(
Ḧ1|0
Ḧ1|`

)
Noting X = (ξ̇−

|0
, ξ̇+
|`
)T , the trace equations become{

Ẋ = Y
D(X)Ẏ + M(t ,X ,Y)Y = Φ̃(t ,X)

, D(X),M(t ,X ,Y) ∈ R2×2

Discretize this ODE with 
Xn+1 − Xn

∆t
= Yn

Dn Yn+1 − Yn

∆t
+ MnYn+1 = Φ̃n

,
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Numerical scheme

Time stepping procedure

Step 1: Approximate f(tn, ·) = h2
bR1

b

(
fNSW

h2
b

)
and R0

b (φfNSW − gh∂xb)(tn, ·) respectively with

(h2
b ,ivi)1≤i≤N s.t. (R1

b )−1v = (fn
NSW,i/h

2
b ,i)1≤i≤N ,

w ∈ RN s.t. (R0
b )−1w = (φi fn

NSW,i − ghn
i δxbi)1≤i≤N .

Step 2: Approximate the trace equations to get δt (ξ−)n
1 and δt (ξ+)n

N . Then set(ξ−)n+1
1 = (ξ−)n

1 + ∆tδt (ξ−)n
1

(ξ+)n+1
N = (ξ+)n

N + ∆tδt (ξ+)n
N

,

(ξ+)n+1
1 = g0(tn+1)

(ξ−)n+1
N = g`(tn+1)

,

Un+1
1 = H((ξ±)n+1

1 )
Un+1

N = H((ξ±)n+1
N )

.

Step 3: For 2 ≤ i ≤ N, finite volume update with Lax-Friedrichs numerical flux
ζn+1

i − ζn
i

∆t
+

1
∆x

(
qn

i+1/2 − qn
i−1/2

)
= 0

qn+1
i − qn

i

∆t
+

1
αi

fni+1/2 − f
n
i−1/2

∆x
= Sn

i + (s(b ,0))iδt qn
1 + (s(b ,`))iδt qn

N

.
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Alternative coupling

0 `1 `2 `3

(ζL, qL)

Boussinesq-Peregrine

(ζR, qR)

NSW

U

Coupling with overlapping:
∂tζL + ∂xqL = 0 x ∈ (0, `2)
∂tζR + ∂xqR = 0 x ∈ (`1, `3)
∂t qL + 1

α
∂x f(U) = S(U) + s(b ,0)q̇L|0 + s(b ,`2)q̇L|`2

x ∈ (0, `2)

∂t qR + ∂x fNSW(U) = −gh∂xb x ∈ (`1, `3)

with

U(t , x) =


σ(x)UL + (1 − σ(x))UR `1 ≤ x ≤ `2
UL x < `1
UR x > `2

and the coupling conditions

R+(UR)|`1 = R+(UL)|`1 , R−(UL)|`2 = R−(UR)|`2 .

Mathieu Rigal Boundary conditions for Boussinesq models 4 / 4


	Appendix

