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Long term goal: study extreme waves in littoral area

@ Need accurate dispersive model: Boussinesg-type systems

@ Boundary conditions are difficult to deal with
Recently: Perfectly Matched Layer, source function method — costly
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Supervision : David Lannes and Philippe Bonneton
Long term goal: study extreme waves in littoral area
@ Need accurate dispersive model: Boussinesg-type systems
@ Boundary conditions are difficult to deal with

Recently: Perfectly Matched Layer, source function method — costly

— We propose a new and efficient method for boundary conditions.
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Boussinesqg-Abbott: dispersive model over flat bottom

Consider the Boussinesg-Abbott system

0l +0xq=0
b in (0,¢) (BA)
(1 = K°05%)0tq + OxInsw({, ) = 0
with generating boundary conditions
é’(ty 0) = gO(t), {(t,f) = gf(t)’ (1)

where go, g, € C(0, T) and
K =H;/3,  fsw(l,q) = hu? + gh?/2
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Reformulation of the model

How to account for boundary conditions? How to recover q,_ ,?
@ Hyperbolic case (kx = 0) : Riemann invariants
@ Dispersive case («x > 0) : need to invert (1 — ¥242,) — requires knowledge on 0tQcos
Lannes and Weynans 2020 “Generating boundary conditions for a Boussinesq system”
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Reformulation of the model

How to account for boundary conditions? How to recover q,_ ,?
@ Hyperbolic case (kx = 0) : Riemann invariants
@ Dispersive case («x > 0) : need to invert (1 — ¥242,) — requires knowledge on 0tQcos
Lannes and Weynans 2020 “Generating boundary conditions for a Boussinesq system”

Fix 0 <t < T, then y(x) = d:q(t, x) satisfies an ODE of the form
y = 12y" = ¢(x)
y(0) =g, y(6) =q,

Yn— &2y =0 Yo — K2y) = ¢(X)

Equivalently: y =y, +yp, with : . an
¥n(0) = Gy>  Yn(€) = G, ¥6(0) = yu(£) =0
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Reformulation of the model

How to account for boundary conditions? How to recover q,_ ,?
@ Hyperbolic case (kx = 0) : Riemann invariants
@ Dispersive case («x > 0) : need to invert (1 — ¥242,) — requires knowledge on 0tQcos
Lannes and Weynans 2020 “Generating boundary conditions for a Boussinesq system”

Fix 0 <t < T, then y(x) = d:q(t, x) satisfies an ODE of the form
y = 12y" = ¢(x)
y(0) =g, y(6) =q,

Yo=Ky =0 and 1o~ Kyl = p(x)
yn(0) = Gy, Ya(f) =4, ¥6(0) = ¥(€) = 0

. J

Equivalently: y =y, +yp, with {

Define R° as the inverse of (1 — k202,) with homogeneous Dirichlet conditions. Then

0:q = —R%dfusw + 5(0)d, + S04
—— —

Yb Yh

(1 - K2(92)5(0) =0 { (1 - Kzaz)S(g) =0
where X and X . 2
{ 5(0)( 50(0) =0, s4() =1 @)
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Reformulation of the model

Note R’ the inverse of (1 — «?62,) with homogeneous Neumann conditions
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Reformulation of the model

Note R’ the inverse of (1 — «?62,) with homogeneous Neumann conditions

Proposition 1 (Equivalent formulation with nonlocal flux)

Let (¢, q) initially equal to (¢, ™). The two assertions are equivalent:
@ The pair (£, q) satisfies (BA) with generating conditions (-,0) = go and (-, €) = g,
© The pair (£, q) satisfies

{a@ +dxq=0

; ; ; in(0,), ()
0:q + 0x(R" Insw) = 5(0)Q + 5009,

with

(520)(0) SEZ)(O)) (%) _ 1 ((F"1 —id);, stw) _ (Qo) 4)
500 (0)\a) = @ \(R — i), fusw) "\
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Reformulation of the model

Note R’ the inverse of (1 — «?62,) with homogeneous Neumann conditions

Proposition 1 (Equivalent formulation with nonlocal flux)

Let (¢, q) initially equal to (¢, ™). The two assertions are equivalent:
@ The pair (£, q) satisfies (BA) with generating conditions (-,0) = go and (-, €) = g,
© The pair (£, q) satisfies

{a@ +dxq=0

; ; ; in(0,), ()
0:q + 0x(R" Insw) = 5(0)Q + 5009,

with

(520)(0) SEZ)(O)) (QO) _1 ((F"1 —id), stw) B (Qo) (@)
So)  s5(0)\a) ~ 2 \(R" —id), fsw) \8e
Sketch of the proof:

@ To get (3), check that R%9, = 6,R".
@ Apply 9y to the discharge eq. from (3); take the trace at x = 0, ¢ to get (4).

aitq + (axx’:“1 fnsw) = Szo)C-IO + 5{[)@’
~—— —
-#¢ 5 (d-R)isw
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Other boundary conditions

Possibility to enforce general boundary conditions

£ q)(t.0) = go(t), &I, ql(t. €) = ge(t). (5)

For instance, &* given by g or Riemann invariants

R.(U) = u+2+/gh.
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Other boundary conditions

Possibility to enforce general boundary conditions

§'14.al(t.0) = go(t),  £7(Z,q)(t.€) = ge(1). ®)

For instance, &* given by g or Riemann invariants

R.(U) = u+2+/gh.

Adapt trace ODE in terms of missing data (outgoing information &, and &;)

& & & &
—_— — —

|

[

0 (SZo)(O) S(’g)(o)) d (CI( 5)) ! ((H1 —id);, stw) _ d_z(s“(fé))
&)

T \(R —id), fusw
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Numerical scheme for the reformulated system

Discretize (0, ¢) as follows:

X1 X2 XN-1 XN
0 Ax - Ax V4
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Numerical scheme for the reformulated system

Discretize (0, ¢) as follows:

I B B I T S B
0 Ax - Ax V4
Xi1/2
Note U" = (£, q")" the approximation of — (g) (1", s)ds.
Xi-1/2
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Numerical scheme for the reformulated system

Discretize (0, ¢) as follows:

I B B I T S B
0 Ax - Ax V4
1 Xi1/2
Note U" = (£",g")T the approximation of — ¢ (1", s)ds.
i i i AX Xt 2 q

Time stepping procedure

Step 1: Define R' 7, as the vector v € R satisfying

_2 Vit — 2V + Viq
Ax?
Vo—Vi VN — VN

= =0
Ax Ax

Similar definition for sy and s.

= stw(Ufn) for2<i<N-1

i
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Numerical scheme for the reformulated system

Time stepping procedure

Step 2: Approx. trace ODEs using FD scheme to get 647, 6:qy,; Update border values

q?*j =g +Ot6g) T = go(t™)
ay" = qy +Atéqy
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Numerical scheme for the reformulated system

Time stepping procedure

Step 2: Approx. trace ODEs using FD scheme to get 647, 6:qy,; Update border values

qit! = qf + Até;q] and T = go(t™)
an' = gy + Atsqy, el = ge(t™)

Step 3: For 2 < i < N, finite volume update with Lax-Friedrichs numerical flux

{n+1 é«n 1
A E(Qﬁrwz - q£1/2) =0
q(1+1 _ qp 1
’A—t’ + E((E frsw)ist/2 — (B fsw)izt/2) = (50)i61a7 + (5(0)iran

Mathieu Rigal Boundary conditions for Boussinesq models 7/21



Numerical scheme for the reformulated system

@ Second order extension: MacCormack (prediction-correction)
@ Advantage: no sponge layer required

Incoming solitary wave
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Numerical scheme for the reformulated system

Ax Lax-Friedrichs MacCormack

L2-error  Order L2-error  Order
0.569662 0.052002 - 0.020162 -
0.284831 0.040773 0.35 0.003910 2.37
0.142416  0.024022 0.76 0.000767 2.35
0.071208 0.012777 0.91 0.000161 2.25
0.035604 0.006621 0.95 0.000037 2.12

Table: Error for incoming soliton (£ enforced)

Ax Lax-Friedrichs MacCormack

L2-error  Order  L2-error  Order
0.284831 0.024246 - 0.001088 -
0.142416 0.014574 0.73 0.000314 1.79
0.071208 0.008471 0.78 0.000101 1.64
0.035604 0.004751 0.83 0.000029 1.80
0.017802 0.002559 0.89 0.000008 1.86

Table: Error for outgoing soliton (¢ enforced)

Mathieu Rigal Boundary conditions for Boussinesq models 9/21



Boussinesq-Peregrine system with varying bottom

Account for varying bottom with Boussinesg-Peregrine in (£, g)-coordinates

6,{ + 8xq =0 ]
{ (1 + hyTb)0:q + Oxfnsw = —ghdxb in (0.0)., (BP)

under generating boundary conditions
4(t,0)=go(t),  {(t,€) = ge(t),
with h, = Hy — b (depth at rest) and

1 3
To() = _3_hb‘9x(hba

(), Oy, ©

xh—b +E

Rigid bottom

Mathieu Rigal Boundary conditions for Boussinesq models 10/21



Boussinesq-Peregrine system with varying bottom

Note Rg the inverse of (1 + h,7}) with homogeneous Dirichlet conditions. Then

8:q = —Rpdxfysw — gRo(hAb) + 56,0y + 5604, (7)
(1 + hbTb)S(b 0) = 0 { (1 + hbTb)g(b 0 = 0
where ’ and ’
{ s6.0/(0) =1, 5p0(€) =0 5b6.0(0) =0, spy(l) =1
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Boussinesq-Peregrine system with varying bottom

Note Rg the inverse of (1 + h,7}) with homogeneous Dirichlet conditions. Then

8:q = —Rpdxfxsw — GRJ(hdxb) + $(6.0) 8l + S(p.0) 4, (7)
(1 + hbTb)S(b 0) = 0 { (1 + hbTb)S(b 0 = 0
where ’ and ’
{ s6.0/(0) =1, 5p0(€) =0 5b6.0(0) =0, spy(l) =1

Lemma 1 (generalization of R%9, = d,R")
We can construct a nonlocal operator R}, such that

(0 + ¢)[h§l—?’;(%)] - RY(()9) with a=1+ %(axb)2 and ¢ - ga;bb

1
R3Ox(-) = p

A\,

Definition 1 (Nonlocal flux and source terms)
¢

a

i+ RY(¢fnsw)

f
- hiﬂg(%), S = RO(~ghdyb) -
b

\
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Boussinesq-Peregrine system with varying bottom

Proposition 2 (Equivalent formulation with nonlocal flux)

Let (¢, q) initially equal to ({, ™). The two assertions are equivalent:
@ The pair (£, q) satisfies (BP) with generating conditions (-,0) = go and (-, €) = g,
@ The pair (£, q) satisfies

6@’ + qu = 0,

1 , _ in(0,7) (8)
0iq + ;f%(f(U’ x) = S(U, X) + 5b,0)40 + 5(b.0)0¢

and the trace equations

52[,, (0) slb, (0) Qo _ 0 _ _ o
(%b,?)(t’) S(Eb,z))(f) 9 _(D(q"’«"’f'°v"’6"Rb\o.z(¢stw ghﬁxb)) 9e ©)

where ® : R® — R? known.
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Enforcing waves through boundary conditions

Question: starting from a wrong initial condition, can we recover the solution by enforcing
appropriate boundary conditions?
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Enforcing waves through boundary conditions

Question: starting from a wrong initial condition, can we recover the solution by enforcing
appropriate boundary conditions?

Setup:
@ approximate U solution in (—¢, 2¢) with periodic conditions;
@ extract go(t") = o (t")&* [Urerl), (t") and ge(t") = o(t")& [Uper], (1");
@ approximate new solution in (0, ¢), initially at rest, with go, g, enforced at boundaries;

Free surface elevation ¢ [m]

l 0 l 20
Figure: Initial condition ((2rHp)2/A2 = 0.31, ag/Hp = 0.25)
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Enforcing waves th

0.6

h boundary conditions

Comparing different boundary conditions
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Enforcing waves through boundary conditions

Error to reference solution for different boundary conditions
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0.18 ¢ left and right
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Coupling Boussinesqg-Peregrine and shallow water models

Motivation: wave breaking with dispersive models — non physical oscillations.

— Cancel dispersive term near shock wave
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Coupling Boussinesqg-Peregrine and shallow water models

0L +0xqL=0

) _ . . in (0, ¢4)
9iqL + ;0xT(UL) = S(UL) + 56.0)Quio + S(6.6) ALy, (10)
0tlr+0xqr =0 in (61.62)
01QRr + Oxfusw(Ur) = —ghr0xb ’
Coupling conditions: R, (Ur),, =R.(U),,, R-(U),, =R-(Ur),,
0 Boussinesg-Peregrine 2 NSW A
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Coupling Boussinesqg-Peregrine and shallow water models

0L +0xqL=0

) _ . . in (0, ¢4)
9iqL + ;0xT(UL) = S(UL) + 56.0)Quio + S(6.6) ALy, (10)
0ilr +0xqr =0 in (61.62)
01QRr + Oxfusw(Ur) = —ghr0xb
Coupling conditions: R, (Ur),, =R.(U),,, R-(U),, =R-(Ur),,
Fo—____ 1 ——————————————il
L B i P i L ] NSW
0 oussinesq-Peregrine ‘ tre A

In practice, overlapping helps to reduce oscillations/reflections
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Coupling Boussinesqg-Peregrine and shallow water models

0L +0xqL=0

) _ . . in (0, ¢4)
9iqL + ;0xT(UL) = S(UL) + 56.0)Quio + S(6.6) ALy, (10)
0ilr +0xqr =0 in (61.62)
01QRr + Oxfusw(Ur) = —ghr0xb
Coupling conditions: R, (Ur),, =R.(U),,, R-(U),, =R-(Ur),,
Fo—____ 1 ——————————————il
L B i P i L ] NSW
0 oussinesq-Peregrine ‘ tre A

In practice, overlapping helps to reduce oscillations/reflections

@ Approx. Ut*! with FV scheme + hydrostatic reconstruction; R, (Ug), = R, (Up)
R leg leg

=R_(Ur)

@ Convex combination in overlapping area: U*' = p(x)U[;! + (1 = p(x)) Ug'-

@ Approx. U™ with Lax-Friedrichs scheme + trace equations; R_(U,)
L

leg+e leg+e
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Experimental testcase: LEGI

Initial condition
T

T
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Experimental testcase: LEGI

Mathieu Rigal

Free surface elevation ¢ [m]
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Approximate transparent boundary conditions

Use coupling as a sponge layer to evacuate waves.

15

0.5 L L L L L
40 60 80 100 120 140

15
1k

05F /I
0 4

05 L L L L L L L L L L
40 60 80 100 120 140 40 60

80 100 120 140

Figure: Outgoing soliton at times t = 0, 9.46, 14.19, and 23.16 [s]. Green domain corresponds to NSW.
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Conclusion and perspectives

Over a flat bottom:

@ Reformulation of Boussinesg-Abbott
@ Generalized boundary conditions
@ Efficient 1st and 2nd order schemes

Over a varying bottom:
@ Approach extended to Boussinesq-Peregrine
@ Coupling with shallow water model
@ Implementation + validation (experimental data, various boundary conditions tested)

\. J
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Conclusion and perspectives

Over a flat bottom:

@ Reformulation of Boussinesg-Abbott
@ Generalized boundary conditions
@ Efficient 1st and 2nd order schemes

Over a varying bottom:
@ Approach extended to Boussinesq-Peregrine
@ Coupling with shallow water model
@ Implementation + validation (experimental data, various boundary conditions tested)

\. J

Perspectives:
@ Implement scheme in UHAINA
@ Extension to Boussinesq models with improved dispersion relation
@ Statistics of extreme waves: impact of bathymetry
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Conclusion and perspectives

Over a flat bottom:

@ Reformulation of Boussinesg-Abbott
@ Generalized boundary conditions
@ Efficient 1st and 2nd order schemes

Over a varying bottom:
@ Approach extended to Boussinesq-Peregrine
@ Coupling with shallow water model
@ Implementation + validation (experimental data, various boundary conditions tested)

\. J

Perspectives:
@ Implement scheme in UHAINA
@ Extension to Boussinesq models with improved dispersion relation
@ Statistics of extreme waves: impact of bathymetry

Thank you for your attention!
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Riemann invariants

If (h, g) solves the shallow water system, then the Riemann invariants satisfy

diR.(h,q) + A.(h, q)0xR.(h,q) = 0
diR_(h,q) + 1_(h,g)0xR_(h,q) = 0

with R, = u+2+/ghand A, = u+ +/gh.

@ For flat bathymetry, R. remains constant along characteristics.
@ Natural choice of outgoing data in fluvial regime (|u| < +/gh).
@ In the shallow limit H5/L? — 0, Boussinesq models degenerate into shallow water.
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General boundary conditions

We wish to enforce more general boundary conditions

&40l 0) = go(t).  £71Z.q)(t.€) = ge(b), (11)

Assume there exists a smooth map H : ££[¢,q] — (£, q):

s (0) s, (0)\[H. H
(ot o)) = ot o - gna) -G

Noting X = (&, &), the trace equations become

X=Y
y ® . D(X),M(t, X, Y) € R*®
{ D(X)Y + M(t, X, Y)Y = ®(t, X) (X), M( )€
Discretize this ODE with
Xﬂ+1 —_ X"
_— = n
At1
yn+t _yn _ s
n______ n n+1= n
D'+ MY =0
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Numerical scheme

Time stepping procedure

Step 1: Approximate f(t", ) = h2R} (%) and RY(¢fxsw — ghdyb)(", ) respectively with
b

(hﬁ,,-vi)mgrv s.t. (Bé)q‘/:(frasw,i/hg,i)migN,

weRN st (R))'w = (¢ifisw, — 9N/ 6xb)1<i<n.

Step 2: Approximate the trace equations to get 6;(£7)f and 6;(£*)y. Then set

(€77 = ()] + Aty (€)] (€)' = go(t™) {U?” = H((E)T)
EW" = EN+DtEENR @t =gt™) U = H(ER)

Step 3: For 2 < i < N, finite volume update with Lax-Friedrichs numerical flux
{n+1 {n 1
A E(Qﬁruz - q;1—1/2) =0
g -qr . l e = Tl
At ; Ax

= G} + (50,0)i0:97 + (5(6.0)i0: G
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Alternative coupling

(4L aqu) U (¢r» QR)

[ Fo---- o
(% Boussinesq-Peregrine KE éz NSW fja

Coupling with overlapping:

0l +0xqu=0 €(0,%)
O1lr+0xqr =0 € (t1.0s)
0 + 20x(U) = S(U) + 5.0/ + S(b,(z)C'JL\,Z €(0,£2)
3iqr + Oxfnsw(U) = —ghdcb € (ty,03)
with
oxX)U+(1—ox))Usr €1 <x<b
Ut,x)={U, X < {
Ur X > o

and the coupling conditions

R (UR)y,, = Re(UL) R_(U)y, =R-(Ur)

ley » ley *
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