Modélisation du déferlement des vagues sur des bathymétries variables 2D et 3D

Marissa L. Yates¹, Sunil Mohanlal¹, Jeffrey Harris¹, Stephane Grilli² ¹LHSV, Ecole des Ponts ParisTech, EDF R&D ³Department of Ocean Engineering, University of Rhode Island

October 2023 Journées de Modélisation des Vagues à Phases Résolues

Background and motivation

Mathematical and numerical models Wave breaking modeling

2D and 3D test cases

Laboratory experiments

Summary and ongoing work

Background and motivation

Background and motivation

Wave impacts

Coastal risks

Coastal zone wave modeling

- **Objective:** develop an accurate, nonlinear, phase-resolving nearshore wave propagation model
- Challenge: accurate and computationally efficient modeling of the dominant physical processes at a wide range of spatial and temporal scales
- Current Work: wave breaking effects and extension to 3D

Wave breaking: 3DWaveBI project

Improve modeling of: (1) far-field wave conditions,

(2) wave breaking,

(3) wave forces on structures

Spilling breaker

Plunging breaker

Surging breaker

Importance of modeling wave breaking:

- · offshore and coastal wave forecasting
- · estimating wave forces on coastal and maritime structures
- · evaluating air-sea gas and heat exchanges

Spilling breaker

Plunging breaker

Steepness-limited

(deep water)

Breaking waves

Spilling breaker $\xi_0 < 0.5$

 $\begin{array}{l} \textit{Plunging breaker} \\ 0.5 < \xi_0 < 3.3 \end{array}$

Surging breaker $3.3 < \xi_0$

Steepness-limited

(deep water)

Depth-limited

(shallow water)

where
$$\xi_0 = \frac{m}{\sqrt{H_0/L_0}}$$

Wave breaking statistics

- · Where do waves break?
- What forces do breaking waves generate on structures?
- · What type of wave breaking?

Wave breaking statistics

- · Where do waves break?
- What forces do breaking waves generate on structures?
- · What type of wave breaking?

Mathematical and numerical models

Mathematical model

- · incompressible flow
- · inviscid fluid
- homogeneous atmospheric pressure
- irrotational (potential) flow $\nabla \phi = \underline{u}(x, z, t)$

Water wave problem

- 1. Laplace equation $\nabla^2 \phi = 0$ in Ω
- 2. KFSBC (no flow across interface)
- 3. DFSBC (Bernoulli equation)
- 4. Bottom and lateral boundary conditions

Numerical model

Misthyc code

Calculating the free surface velocity potential

- · Horizontal resolution: high order finite difference method (e.g. Bingham et al., 2007)
- · Vertical resolution: spectral method (Tian et al., 2008)

• Zakharov equations:

$$\begin{aligned} \eta_t &= -\nabla \eta \nabla \tilde{\phi} + \tilde{w} \left(1 + (\nabla \eta)^2 \right) \\ \tilde{\phi}_t &= -g\eta - \frac{1}{2} (\nabla \tilde{\phi})^2 + \frac{1}{2} \tilde{w}^2 \left(1 + (\nabla \eta)^2 \right) \text{ with } \tilde{w} = \frac{\partial \phi}{\partial z} \Big|_{z=\eta} \end{aligned}$$

Temporal integration with explicit 4th order Runge-Kutta method

0.5

0

-0.5

Numerical model

NWT (Numerical Wave Tank) code

Calculating the free surface velocity potential

• Boundary Integral Equation $\begin{aligned} &\alpha(\mathbf{x}_i)\phi(\mathbf{x}_i) = \\ &\int_{\Gamma} \left\{ \frac{\partial \phi}{\partial n}(\mathbf{x})G(\mathbf{x} - \mathbf{x}_i) - \phi(\mathbf{x})\frac{\partial G}{\partial n}(\mathbf{x} - \mathbf{x}_i) \right\} d\Gamma \\ &G \text{ - Green's function for Laplacian} \end{aligned}$

Advancing in time

- Mixed Eulerian-Lagrangian frame of reference $\frac{D\mathbf{r}}{D\mathbf{t}} = \frac{\partial \mathbf{r}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{r} = \mathbf{u} = \nabla\phi$ $\frac{D\phi}{Dt} = -gz + \frac{1}{2}|\nabla\phi|^2 - p_a$
- Temporal integration with 2nd order Taylor series expansion

How can the effects of wave breaking be modeled?

- 1. Wave breaking initiation
- 2. Energy dissipation
- 3. Wave breaking termination

Seeking a unified approach from deep to shallow water: Is this possible?

Types of wave breaking criteria

- **Geometric criteria:** based on the geometric characteristics of the wave (e.g. steepness, horizontal asymmetry, angle of wave front) (*e.g. Rapp and Melville, 1990; Schäffer et al., 1993*)
- Kinematic criteria: when the fluid velocity exceeds the speed of wave propagation (U/C > 1)
 (e.g. Kennedy et al., 2000; Stansel and Farlane, 2002; Tian et al., 2010; D'Alessandro and Tomasicchio, 2008)
- **Dynamic criteria:** when the local wave energy flux exceeds a threshold: $B_x = \frac{F_x}{Ec_x} = U_x/C_x$ (e.g. Barthelémy et al., 2018)

Wave energy dissipation mechanisms

- Hydraulic jump model: analogy between breaking waves and hydraulic jump (e.g. Guignard and Grilli, 2001)
- Eddy viscosity model: dissipating energy with an eddy viscosity (e.g. Kennedy et al., 2000; Kurnia and van Groesen, 2014)
 - Vorticity model: separating the flow into the irrotational and rotational components and resolving a vorticity transport equation (*e.g. Svendsen et al., 1996; Veeramony and Svendsen, 1998*)
 - TKE closure model: solving a PDE estimate the eddy viscosity as a function of the turbulent kinetic energy (*e.g. Zhang et al., 2014*)
- **Hybrid model:** turning off the dispersion terms (switching from non-hydrostatic to hydrostatic equations) (*e.g. Tonelli and Petti, 2012; Tissier et al., 2012*)

Wave breaking

How to take into account the effects of wave breaking?

- 1. Wave breaking initiation \rightarrow threshold B=0.85 (Barthelemy et al. , 2018; Derakhti et al., 2020)
- Energy dissipation → analogy to hydraulic jump (Guignard et Grilli, 2001; Grilli et al., 2019)
- 3. Wave breaking termination \rightarrow termination criterion calibrated for each test case

Seeking a unified approach from deep to shallow water: Is this possible?

Wave breaking

How to take into account the effects of wave breaking?

- 1. Wave breaking initiation \rightarrow threshold B=0.85 (Barthelemy et al. , 2018; Derakhti et al., 2020)
- Energy dissipation → analogy to hydraulic jump (Guignard et Grilli, 2001; Grilli et al., 2019)
- 3. Wave breaking termination \rightarrow termination criterion calibrated for each test case

Goal: unified theory of breaking onset and dissipation:

- · depth-limited waves (Mohanlal et al., 2023)
- steepness-limited waves (Mohanlal et al., 2022, ICCE)
- · depth-limited waves in 3D (Mohanlal et al., submitted)

Breaking onset

Breaking onset

Pressure-type disspiation

• DFSBC:
$$\frac{D\phi}{Dt} = -gz + \frac{1}{2}|\nabla\phi|^2 - P_a/\rho$$

• **P**a = damping pressure

Breaking strength

•
$$\gamma = T_b \frac{dB}{dt}|_{B=B_{th}}$$

•
$$T_b \equiv \mathsf{T}(x^*, t^*)$$

(Derakhti et al. 2018)

Wave breaking dissipation

Hydraulic jump model

- Instantaneous power dissipated, $\Pi(t) = \mu gcd \frac{H^3}{4h_c h_t}$
- $\mu = 1.5$ (Svendsen et al., 1978)

Damping pressure

• Applied for $x \in (x_l, x_r)$

•
$$\Pi(t) = \int_{X} P_a(x,t)\phi_n(x,t)\sqrt{1+\eta_x^2}dx$$

•
$$P_a(x,t) = \frac{\Pi(t)S(x)\phi_n(x,t)}{\int_x S(x)\phi_n^2\sqrt{1+\eta_x^2}dx}$$

Guignard et Grilli (2001); Grilli et al. (2019)

Parameterization

- · HS Hansen Svendsen 1979
- TK Ting Kirby 1994
- · BB Beji Battjes 1993

(Also previously validated in Papoutsellis et al. 2019, Simon et al. 2019 and Grilli et al. 2020)

Dissipation strength

• In analogy to Duncan (1983): $\overline{b} = \frac{\overline{\Pi} \cdot g}{C_b^5}$

•
$$C_b \equiv C(x^*, t^*)$$

Following scaling law bounds: let $\overline{b} = 0.05$ for depth-limited breaking

 extended to 3D along quasi-uniform 2D sections of wave crests (Mohanlal et al., submitted)

2D and 3D test cases

Wave statistics : 2D irregular wave breaking

Misthyc model

(Beji and Battjes, 1993; Adytia et al., 2018)

Mohanlal et al., 2023

Wave statistics : 3D regular wave breaking

(Kamath et al., 2022)

Mohanlal et al., submitted

Laboratory experiments

3D wave tank

Measurements

Side view camera

Top view

Identification of wave breaking zones (Internship G. Dreysse)

Characterization of breaking waves (Internship A. Guidal)

Summary and ongoing work

Summary

Depth-limited breaking

- verified using *B* = 0.85
- proposed *b* = 0.05
- preliminary work in extending to 3D is promising
- steepness-limited breaking uses variable b

Ongoing work

- investigating ξ_0 (red=plunging, blue=spilling)
- · validating the 3D model
- · comparing the 2D and 3D simulations in the planned laboratory experiments
- ... laboratory experiments...

Thank you!

Acknowledgements: This research was produced within the framework of the Energy4Climate Interdisciplinary Center (E4C) of IP Paris and Ecole des Ponts ParisTech and is supported by d'Investissements d'Avenir [ANR-18-EUR-0006-02] and the Chair "Challenging Technology for Responsible Energy" led by I'X – Ecole Polytechnique and the Fondation de l'Ecole Polytechnique, sponsored by TotalEnergies. SG acknowledges support from the US National Science Foundation grant #OCE-19-47960. Thank you to Arthur Guidel, Gabriel Dreysse, Jiankai Wang, Luc Pastur, Christophe Peyrard, and the members of the POMPHY in the LNHE laboratory.